ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00913
22
8

Unsupervised Bi-directional Flow-based Video Generation from one Snapshot

3 March 2019
Lu Sheng
Junting Pan
Jiaming Guo
Jing Shao
Xiaogang Wang
Chen Change Loy
    VGen
ArXivPDFHTML
Abstract

Imagining multiple consecutive frames given one single snapshot is challenging, since it is difficult to simultaneously predict diverse motions from a single image and faithfully generate novel frames without visual distortions. In this work, we leverage an unsupervised variational model to learn rich motion patterns in the form of long-term bi-directional flow fields, and apply the predicted flows to generate high-quality video sequences. In contrast to the state-of-the-art approach, our method does not require external flow supervisions for learning. This is achieved through a novel module that performs bi-directional flows prediction from a single image. In addition, with the bi-directional flow consistency check, our method can handle occlusion and warping artifacts in a principled manner. Our method can be trained end-to-end based on arbitrarily sampled natural video clips, and it is able to capture multi-modal motion uncertainty and synthesizes photo-realistic novel sequences. Quantitative and qualitative evaluations over synthetic and real-world datasets demonstrate the effectiveness of the proposed approach over the state-of-the-art methods.

View on arXiv
Comments on this paper