ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00395
35
18

Single Image Haze Removal Using Conditional Wasserstein Generative Adversarial Networks

1 March 2019
Joshua Peter Ebenezer
Bijaylaxmi Das
Sudipta Mukhopadhyay
    GAN
ArXiv (abs)PDFHTML
Abstract

We present a method to restore a clear image from a haze-affected image using a Wasserstein generative adversarial network. As the problem is ill-conditioned, previous methods have required a prior on natural images or multiple images of the same scene. We train a generative adversarial network to learn the probability distribution of clear images conditioned on the haze-affected images using the Wasserstein loss function, using a gradient penalty to enforce the Lipschitz constraint. The method is data-adaptive, end-to-end, and requires no further processing or tuning of parameters. We also incorporate the use of a texture-based loss metric and the L1 loss to improve results, and show that our results are better than the current state-of-the-art.

View on arXiv
Comments on this paper