ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00231
11
24

Single Image Deblurring and Camera Motion Estimation with Depth Map

1 March 2019
Liyuan Pan
Yuchao Dai
Miaomiao Liu
    MDE
ArXivPDFHTML
Abstract

Camera shake during exposure is a major problem in hand-held photography, as it causes image blur that destroys details in the captured images.~In the real world, such blur is mainly caused by both the camera motion and the complex scene structure.~While considerable existing approaches have been proposed based on various assumptions regarding the scene structure or the camera motion, few existing methods could handle the real 6 DoF camera motion.~In this paper, we propose to jointly estimate the 6 DoF camera motion and remove the non-uniform blur caused by camera motion by exploiting their underlying geometric relationships, with a single blurry image and its depth map (either direct depth measurements, or a learned depth map) as input.~We formulate our joint deblurring and 6 DoF camera motion estimation as an energy minimization problem which is solved in an alternative manner. Our model enables the recovery of the 6 DoF camera motion and the latent clean image, which could also achieve the goal of generating a sharp sequence from a single blurry image. Experiments on challenging real-world and synthetic datasets demonstrate that image blur from camera shake can be well addressed within our proposed framework.

View on arXiv
Comments on this paper