ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00149
12
10

Chinese-Japanese Unsupervised Neural Machine Translation Using Sub-character Level Information

1 March 2019
Longtu Zhang
Mamoru Komachi
ArXivPDFHTML
Abstract

Unsupervised neural machine translation (UNMT) requires only monolingual data of similar language pairs during training and can produce bi-directional translation models with relatively good performance on alphabetic languages (Lample et al., 2018). However, no research has been done to logographic language pairs. This study focuses on Chinese-Japanese UNMT trained by data containing sub-character (ideograph or stroke) level information which is decomposed from character level data. BLEU scores of both character and sub-character level systems were compared against each other and the results showed that despite the effectiveness of UNMT on character level data, sub-character level data could further enhance the performance, in which the stroke level system outperformed the ideograph level system.

View on arXiv
Comments on this paper