ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.10905
13
16

PixelSteganalysis: Pixel-wise Hidden Information Removal with Low Visual Degradation

28 February 2019
Dahuin Jung
Ho Bae
Hyun-Soo Choi
Sungroh Yoon
ArXivPDFHTML
Abstract

Recently, the field of steganography has experienced rapid developments based on deep learning (DL). DL based steganography distributes secret information over all the available bits of the cover image, thereby posing difficulties in using conventional steganalysis methods to detect, extract or remove hidden secret images. However, our proposed framework is the first to effectively disable covert communications and transactions that use DL based steganography. We propose a DL based steganalysis technique that effectively removes secret images by restoring the distribution of the original images. We formulate a problem and address it by exploiting sophisticated pixel distributions and an edge distribution of images by using a deep neural network. Based on the given information, we remove the hidden secret information at the pixel level. We evaluate our technique by comparing it with conventional steganalysis methods using three public benchmarks. As the decoding method of DL based steganography is approximate (lossy) and is different from the decoding method of conventional steganography, we also introduce a new quantitative metric called the destruction rate (DT). The experimental results demonstrate performance improvements of 10-20% in both the decoded rate and the DT.

View on arXiv
Comments on this paper