ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.10107
11
343

Utterance-level Aggregation For Speaker Recognition In The Wild

26 February 2019
Weidi Xie
Arsha Nagrani
Joon Son Chung
Andrew Zisserman
ArXivPDFHTML
Abstract

The objective of this paper is speaker recognition "in the wild"-where utterances may be of variable length and also contain irrelevant signals. Crucial elements in the design of deep networks for this task are the type of trunk (frame level) network, and the method of temporal aggregation. We propose a powerful speaker recognition deep network, using a "thin-ResNet" trunk architecture, and a dictionary-based NetVLAD or GhostVLAD layer to aggregate features across time, that can be trained end-to-end. We show that our network achieves state of the art performance by a significant margin on the VoxCeleb1 test set for speaker recognition, whilst requiring fewer parameters than previous methods. We also investigate the effect of utterance length on performance, and conclude that for "in the wild" data, a longer length is beneficial.

View on arXiv
Comments on this paper