ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.09230
14
2

Sampling Sup-Normalized Spectral Functions for Brown-Resnick Processes

25 February 2019
M. Oesting
Martin Schlather
C. Schillings
ArXivPDFHTML
Abstract

Sup-normalized spectral functions form building blocks of max-stable and Pareto processes and therefore play an important role in modeling spatial extremes. For one of the most popular examples, the Brown-Resnick process, simulation is not straightforward. In this paper, we generalize two approaches for simulation via Markov Chain Monte Carlo methods and rejection sampling by introducing new classes of proposal densities. In both cases, we provide an optimal choice of the proposal density with respect to sampling efficiency. The performance of the procedures is demonstrated in an example.

View on arXiv
Comments on this paper