ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.08722
126
271
v1v2v3v4v5 (latest)

A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks

23 February 2019
Hadi Salman
Greg Yang
Huan Zhang
Cho-Jui Hsieh
Pengchuan Zhang
    AAML
ArXiv (abs)PDFHTMLGithub (41★)
Abstract

Verification of neural networks enables us to gauge their robustness against adversarial attacks. Verification algorithms fall into two categories: exact verifiers that run in exponential time and relaxed verifiers that are efficient but incomplete. In this paper, we unify all existing LP-relaxed verifiers, to the best of our knowledge, under a general convex relaxation framework. This framework works for neural networks with diverse architectures and nonlinearities and covers both primal and dual views of robustness verification. We further prove strong duality between the primal and dual problems under very mild conditions. Next, we perform large-scale experiments, amounting to more than 22 CPU-years, to obtain exact solution to the convex-relaxed problem that is optimal within our framework for ReLU networks. We find the exact solution does not significantly improve upon the gap between PGD and existing relaxed verifiers for various networks trained normally or robustly on MNIST and CIFAR datasets. Our results suggest there is an inherent barrier to tight verification for the large class of methods captured by our framework. We discuss possible causes of this barrier and potential future directions for bypassing it.

View on arXiv
Comments on this paper