ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.07776
11
30

Perceptual Quality-preserving Black-Box Attack against Deep Learning Image Classifiers

20 February 2019
Diego Gragnaniello
Francesco Marra
Giovanni Poggi
L. Verdoliva
    AAML
ArXivPDFHTML
Abstract

Deep neural networks provide unprecedented performance in all image classification problems, taking advantage of huge amounts of data available for training. Recent studies, however, have shown their vulnerability to adversarial attacks, spawning an intense research effort in this field. With the aim of building better systems, new countermeasures and stronger attacks are proposed by the day. On the attacker's side, there is growing interest for the realistic black-box scenario, in which the user has no access to the neural network parameters. The problem is to design efficient attacks which mislead the neural network without compromising image quality. In this work, we propose to perform the black-box attack along a low-distortion path, so as to improve both the attack efficiency and the perceptual quality of the adversarial image. Numerical experiments on real-world systems prove the effectiveness of the proposed approach, both in benchmark classification tasks and in key applications in biometrics and forensics.

View on arXiv
Comments on this paper