ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.07580
11
0

Where Do Human Heuristics Come From?

20 February 2019
Marcel Binz
Dominik M. Endres
ArXivPDFHTML
Abstract

Human decision-making deviates from the optimal solution, that maximizes cumulative rewards, in many situations. Here we approach this discrepancy from the perspective of bounded rationality and our goal is to provide a justification for such seemingly sub-optimal strategies. More specifically we investigate the hypothesis, that humans do not know optimal decision-making algorithms in advance, but instead employ a learned, resource-bounded approximation. The idea is formalized through combining a recently proposed meta-learning model based on Recurrent Neural Networks with a resource-bounded objective. The resulting approach is closely connected to variational inference and the Minimum Description Length principle. Empirical evidence is obtained from a two-armed bandit task. Here we observe patterns in our family of models that resemble differences between individual human participants.

View on arXiv
Comments on this paper