ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06789
8
0

Seven Myths in Machine Learning Research

18 February 2019
Oscar Chang
Hod Lipson
ArXivPDFHTML
Abstract

We present seven myths commonly believed to be true in machine learning research, circa Feb 2019. This is an archival copy of the blog post at https://crazyoscarchang.github.io/2019/02/16/seven-myths-in-machine-learning-research/ Myth 1: TensorFlow is a Tensor manipulation library Myth 2: Image datasets are representative of real images found in the wild Myth 3: Machine Learning researchers do not use the test set for validation Myth 4: Every datapoint is used in training a neural network Myth 5: We need (batch) normalization to train very deep residual networks Myth 6: Attention >>> Convolution Myth 7: Saliency maps are robust ways to interpret neural networks

View on arXiv
Comments on this paper