ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06007
19
20

Neural-encoding Human Experts' Domain Knowledge to Warm Start Reinforcement Learning

15 February 2019
Andrew Silva
Matthew C. Gombolay
    OffRL
ArXivPDFHTML
Abstract

Deep reinforcement learning has been successful in a variety of tasks, such as game playing and robotic manipulation. However, attempting to learn \textit{tabula rasa} disregards the logical structure of many domains as well as the wealth of readily available knowledge from domain experts that could help "warm start" the learning process. We present a novel reinforcement learning technique that allows for intelligent initialization of a neural network weights and architecture. Our approach permits the encoding domain knowledge directly into a neural decision tree, and improves upon that knowledge with policy gradient updates. We empirically validate our approach on two OpenAI Gym tasks and two modified StarCraft 2 tasks, showing that our novel architecture outperforms multilayer-perceptron and recurrent architectures. Our knowledge-based framework finds superior policies compared to imitation learning-based and prior knowledge-based approaches. Importantly, we demonstrate that our approach can be used by untrained humans to initially provide >80% increase in expected reward relative to baselines prior to training (p < 0.001), which results in a >60% increase in expected reward after policy optimization (p = 0.011).

View on arXiv
Comments on this paper