ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.05679
48
141
v1v2 (latest)

ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization

15 February 2019
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
ArXiv (abs)PDFHTML
Abstract

In this paper, we propose a new stochastic algorithmic framework to solve stochastic composite nonconvex optimization problems that covers both finite-sum and expectation settings. Our algorithms rely on the SARAH estimator introduced in (Nguyen et al., 2017a) and consist of two steps: a proximal gradient step and an averaging step that are different from existing nonconvex proximal-type algorithms. The algorithms only require a smoothness assumption of the nonconvex objective term. In the finite-sum case, we show that our algorithm achieves optimal convergence rate by matching the lower-bound worst-case complexity, while in the expectation case, it attains the best-known convergence rate under only standard smoothness and bounded variance assumptions. One key step of our algorithms is a new constant step-size that helps to achieve desired convergence rate. Our step-size is much larger than existing methods including proximal SVRG schemes in the single sample case. We generalize our algorithm to mini-batches for both inner and outer loops, and adaptive step-sizes. We also specify the algorithm to the non-composite case that covers and dominates existing state-of-the-arts in terms of convergence rate. We test the proposed algorithms on two composite nonconvex optimization problems and feedforward neural networks using several well-known datasets.

View on arXiv
Comments on this paper