ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.03809
70
16
v1v2v3 (latest)

High-dimensional central limit theorems for homogeneous sums

11 February 2019
Yuta Koike
ArXiv (abs)PDFHTML
Abstract

This paper develops a quantitative version of de Jong's central limit theorem for homogeneous sums in a high-dimensional setting. More precisely, under appropriate moment assumptions, we establish an upper bound for the Kolmogorov distance between a multi-dimensional vector of homogeneous sums and a Gaussian vector so that the bound depends polynomially on the logarithm of the dimension and is governed by the fourth cumulants and the maximal influences of the components. As a corollary, we obtain high-dimensional versions of fourth moment theorems, universality results and Peccati-Tudor type theorems for homogeneous sums. We also sharpen some existing (quantitative) central limit theorems by applications of our result.

View on arXiv
Comments on this paper