ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.03291
15
39

Distance-based and RKHS-based Dependence Metrics in High Dimension

8 February 2019
Changbo Zhu
Shu Yao
Xianyang Zhang
Xiaofeng Shao
ArXivPDFHTML
Abstract

In this paper, we study distance covariance, Hilbert-Schmidt covariance (aka Hilbert-Schmidt independence criterion [Gretton et al. (2008)]) and related independence tests under the high dimensional scenario. We show that the sample distance/Hilbert-Schmidt covariance between two random vectors can be approximated by the sum of squared componentwise sample cross-covariances up to an asymptotically constant factor, which indicates that the distance/Hilbert-Schmidt covariance based test can only capture linear dependence in high dimension. As a consequence, the distance correlation based t-test developed by Szekely and Rizzo (2013) for independence is shown to have trivial limiting power when the two random vectors are nonlinearly dependent but component-wisely uncorrelated. This new and surprising phenomenon, which seems to be discovered for the first time, is further confirmed in our simulation study. As a remedy, we propose tests based on an aggregation of marginal sample distance/Hilbert-Schmidt covariances and show their superior power behavior against their joint counterparts in simulations. We further extend the distance correlation based t-test to those based on Hilbert-Schmidt covariance and marginal distance/Hilbert-Schmidt covariance. A novel unified approach is developed to analyze the studentized sample distance/Hilbert-Schmidt covariance as well as the studentized sample marginal distance covariance under both null and alternative hypothesis. Our theoretical and simulation results shed light on the limitation of distance/Hilbert-Schmidt covariance when used jointly in the high dimensional setting and suggest the aggregation of marginal distance/Hilbert-Schmidt covariance as a useful alternative.

View on arXiv
Comments on this paper