ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02627
13
18

Fast Transient Simulation of High-Speed Channels Using Recurrent Neural Network

25 January 2019
Thong Nguyen
Tianjian Lu
Ken Wu
J. Schutt-Ainé
ArXivPDFHTML
Abstract

Generating eye diagrams by using a circuit simulator can be very computationally intensive, especially in the presence of nonlinearities. It often involves multiple Newton-like iterations at every time step when a SPICE-like circuit simulator handles a nonlinear system in the transient regime. In this paper, we leverage machine learning methods, to be specific, the recurrent neural network (RNN), to generate black-box macromodels and achieve significant reduction of computation time. Through the proposed approach, an RNN model is first trained and then validated on a relatively short sequence generated from a circuit simulator. Once the training completes, the RNN can be used to make predictions on the remaining sequence in order to generate an eye diagram. The training cost can also be amortized when the trained RNN starts making predictions. Besides, the proposed approach requires no complex circuit simulations nor substantial domain knowledge. We use two high-speed link examples to demonstrate that the proposed approach provides adequate accuracy while the computation time can be dramatically reduced. In the high-speed link example with a PAM4 driver, the eye diagram generated by RNN models shows good agreement with that obtained from a commercial circuit simulator. This paper also investigates the impacts of various RNN topologies, training schemes, and tunable parameters on both the accuracy and the generalization capability of an RNN model. It is found out that the long short-term memory (LSTM) network outperforms the vanilla RNN in terms of the accuracy in predicting transient waveforms.

View on arXiv
Comments on this paper