ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02513
10
8

Advances on CNN-based super-resolution of Sentinel-2 images

7 February 2019
M. Gargiulo
    SupR
ArXiv (abs)PDFHTML
Abstract

Thanks to their temporal-spatial coverage and free access, Sentinel-2 images are very interesting for the community. However, a relatively coarse spatial resolution, compared to that of state-of-the-art commercial products, motivates the study of super-resolution techniques to mitigate such a limitation. Specifically, thirtheen bands are sensed simultaneously but at different spatial resolutions: 10, 20, and 60 meters depending on the spectral location. Here, building upon our previous convolutional neural network (CNN) based method, we propose an improved CNN solution to super-resolve the 20-m resolution bands benefiting spatial details conveyed by the accompanying 10-m spectral bands.

View on arXiv
Comments on this paper