ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02401
30
35

Adversarial Domain Adaptation for Stance Detection

6 February 2019
Brian Xu
Mitra Mohtarami
James R. Glass
ArXiv (abs)PDFHTML
Abstract

This paper studies the problem of stance detection which aims to predict the perspective (or stance) of a given document with respect to a given claim. Stance detection is a major component of automated fact checking. As annotating stances in different domains is a tedious and costly task, automatic methods based on machine learning are viable alternatives. In this paper, we focus on adversarial domain adaptation for stance detection where we assume there exists sufficient labeled data in the source domain and limited labeled data in the target domain. Extensive experiments on publicly available datasets show the effectiveness of our domain adaption model in transferring knowledge for accurate stance detection across domains.

View on arXiv
Comments on this paper