ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.01215
58
21
v1v2v3v4 (latest)

New Risk Bounds for 2D Total Variation Denoising

4 February 2019
S. Chatterjee
Subhajit Goswami
ArXiv (abs)PDFHTML
Abstract

2D Total Variation Denoising (TVD) is a widely used technique for image denoising. It is also an important non parametric regression method for estimating functions with heterogenous smoothness. Recent results have shown the TVD estimator to be nearly minimax rate optimal for the class of functions with bounded variation. In this paper, we complement these worst case guarantees by investigating the adaptivity of the TVD estimator to functions which are piecewise constant on axis aligned rectangles. We rigorously show that, when the truth is piecewise constant, the ideally tuned TVD estimator performs better than in the worst case. We also study the issue of choosing the tuning parameter. In particular, we propose a fully data driven version of the TVD estimator which enjoys similar worst case risk guarantees as the ideally tuned TVD estimator.

View on arXiv
Comments on this paper