ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.01108
8
3

2-D Embedding of Large and High-dimensional Data with Minimal Memory and Computational Time Requirements

4 February 2019
W. Dzwinel
R. Wcislo
Stan Matwin
ArXivPDFHTML
Abstract

In the advent of big data era, interactive visualization of large data sets consisting of M*10^5+ high-dimensional feature vectors of length N (N ~ 10^3+), is an indispensable tool for data exploratory analysis. The state-of-the-art data embedding (DE) methods of N-D data into 2-D (3-D) visually perceptible space (e.g., based on t-SNE concept) are too demanding computationally to be efficiently employed for interactive data analytics of large and high-dimensional datasets. Herein we present a simple method, ivhd (interactive visualization of high-dimensional data tool), which radically outperforms the modern data-embedding algorithms in both computational and memory loads, while retaining high quality of N-D data embedding in 2-D (3-D). We show that DE problem is equivalent to the nearest neighbor nn-graph visualization, where only indices of a few nearest neighbors of each data sample has to be known, and binary distance between data samples -- 0 to the nearest and 1 to the other samples -- is defined. These improvements reduce the time-complexity and memory load from O(M log M) to O(M), and ensure minimal O(M) proportionality coefficient as well. We demonstrate high efficiency, quality and robustness of ivhd on popular benchmark datasets such as MNIST, 20NG, NORB and RCV1.

View on arXiv
Comments on this paper