ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.00579
119
105
v1v2 (latest)

Multi-step Reasoning via Recurrent Dual Attention for Visual Dialog

1 February 2019
Zhe Gan
Yu Cheng
Ahmed El Kholy
Linjie Li
Jingjing Liu
Jianfeng Gao
ArXiv (abs)PDFHTML
Abstract

This paper presents Recurrent Dual Attention Network (ReDAN) for visual dialog, using multi-step reasoning to answer a series of questions about an image. In each turn of the dialog, ReDAN infers answers progressively through multiple steps. In each step, a recurrently-updated semantic representation of the (refined) query is used for iterative reasoning over both the image and previous dialog history. Experimental results on VisDial v1.0 dataset show that the proposed ReDAN model outperforms prior state-of-the-art approaches across multiple evaluation metrics. Visualization on the iterative reasoning process further demonstrates that ReDAN can locate context-relevant visual and textual clues leading to the correct answers step-by-step.

View on arXiv
Comments on this paper