ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.11434
26
73

Input Redundancy for Parameterized Quantum Circuits

31 January 2019
Javier Gil Vidal
D. Theis
ArXivPDFHTML
Abstract

The topic area of this paper parameterized quantum circuits (quantum neural networks) which are trained to estimate a given function, specifically the type of circuits proposed by Mitarai et al. (Phys. Rev. A, 2018). The input is encoded into amplitudes of states of qubits. The no-cloning principle of quantum mechanics suggests that there is an advantage in redundantly encoding the input value several times. We follow this suggestion and prove lower bounds on the number of redundant copies for two types of input encoding. We draw conclusions for the architecture design of QNNs.

View on arXiv
Comments on this paper