ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.11259
17
9

Semantic Hierarchy Preserving Deep Hashing for Large-scale Image Retrieval

31 January 2019
Ming Zhang
Xuefei Zhe
Ou-Yang Le
Shifeng Chen
Hong-Mei Yan
    VLM
ArXivPDFHTML
Abstract

Deep hashing models have been proposed as an efficient method for large-scale similarity search. However, most existing deep hashing methods only utilize fine-level labels for training while ignoring the natural semantic hierarchy structure. This paper presents an effective method that preserves the classwise similarity of full-level semantic hierarchy for large-scale image retrieval. Experiments on two benchmark datasets show that our method helps improve the fine-level retrieval performance. Moreover, with the help of the semantic hierarchy, it can produce significantly better binary codes for hierarchical retrieval, which indicates its potential of providing more user-desired retrieval results.

View on arXiv
Comments on this paper