ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08811
16
61

Face morphing detection in the presence of printing/scanning and heterogeneous image sources

25 January 2019
Matteo Ferrara
Annalisa Franco
Davide Maltoni
    CVBM
ArXivPDFHTML
Abstract

Face morphing represents nowadays a big security threat in the context of electronic identity documents as well as an interesting challenge for researchers in the field of face recognition. Despite of the good performance obtained by state-of-the-art approaches on digital images, no satisfactory solutions have been identified so far to deal with cross-database testing and printed-scanned images (typically used in many countries for document issuing). In this work, novel approaches are proposed to train Deep Neural Networks for morphing detection: in particular generation of simulated printed-scanned images together with other data augmentation strategies and pre-training on large face recognition datasets, allowed to reach state-of-the-art accuracy on challenging datasets from heterogeneous image sources.

View on arXiv
Comments on this paper