ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08339
8
9

Semi-Supervised Semantic Matching

24 January 2019
Zakaria Laskar
Arno Solin
    SSL
ArXivPDFHTML
Abstract

Convolutional neural networks (CNNs) have been successfully applied to solve the problem of correspondence estimation between semantically related images. Due to non-availability of large training datasets, existing methods resort to self-supervised or unsupervised training paradigm. In this paper we propose a semi-supervised learning framework that imposes cyclic consistency constraint on unlabeled image pairs. Together with the supervised loss the proposed model achieves state-of-the-art on a benchmark semantic matching dataset.

View on arXiv
Comments on this paper