ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.07651
61
11
v1v2v3 (latest)

Delta-training: Simple Semi-Supervised Text Classification using Pretrained Word Embeddings

22 January 2019
Hwiyeol Jo
Ceyda Cinarel
ArXiv (abs)PDFHTML
Abstract

We propose a novel and simple method for semi-supervised text classification. The method starts from a hypothesis that a classifier with pretrained word embeddings always outperforms the same classifier with randomly initialized word embeddings, as empirically observed in NLP tasks. Our method first builds two sets of classifiers as a form of model ensemble, and then initializes their word embeddings differently: one using random, the other using pretrained word embeddings. We focus on different predictions between the two classifiers on unlabeled data while following the self-training framework. We also introduce label refinement and early-stopping in meta-epoch for better confidence on the label-by-prediction. We experiment on 4 different classification datasets, showing that our method performs better than the method using only the training set. Delta-training also outperforms the conventional self-training method in multi-class classification, showing robust performance against error accumulation.

View on arXiv
Comments on this paper