ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.06958
44
70
v1v2 (latest)

Domain Adaptation for sEMG-based Gesture Recognition with Recurrent Neural Networks

21 January 2019
István Ketykó
Ferenc Kovács
K. Varga
ArXiv (abs)PDFHTML
Abstract

Surface Electromyography (sEMG/EMG) is to record muscles' electrical activity from a restricted area of the skin by using electrodes. The sEMG-based gesture recognition is extremely sensitive of inter-session and inter-subject variances. We propose a model and a deep-learning-based domain adaptation method to approximate the domain shift for recognition accuracy enhancement. Analysis performed on sparse and HighDensity (HD) sEMG public datasets validate that our approach outperforms state-of-the-art methods.

View on arXiv
Comments on this paper