ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.05562
43
9

Differentially-Private Two-Party Egocentric Betweenness Centrality

16 January 2019
Leyla Roohi
Benjamin I. P. Rubinstein
Vanessa J. Teague
ArXiv (abs)PDFHTML
Abstract

We describe a novel protocol for computing the egocentric betweenness centrality of a node when relevant edge information is spread between two mutually distrusting parties such as two telecommunications providers. While each node belongs to one network or the other, its ego network might include edges unknown to its network provider. We develop a protocol of differentially-private mechanisms to hide each network's internal edge structure from the other; and contribute a new two-stage stratified sampler for exponential improvement to time and space efficiency. Empirical results on several open graph data sets demonstrate practical relative error rates while delivering strong privacy guarantees, such as 16% error on a Facebook data set.

View on arXiv
Comments on this paper