ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.05431
17
8

Evolutionarily-Curated Curriculum Learning for Deep Reinforcement Learning Agents

16 January 2019
M. Green
Benjamin Sergent
P. Shandilya
Vibhor Kumar
ArXivPDFHTML
Abstract

In this paper we propose a new training loop for deep reinforcement learning agents with an evolutionary generator. Evolutionary procedural content generation has been used in the creation of maps and levels for games before. Our system incorporates an evolutionary map generator to construct a training curriculum that is evolved to maximize loss within the state-of-the-art Double Dueling Deep Q Network architecture with prioritized replay. We present a case-study in which we prove the efficacy of our new method on a game with a discrete, large action space we made called Attackers and Defenders. Our results demonstrate that training on an evolutionarily-curated curriculum (directed sampling) of maps both expedites training and improves generalization when compared to a network trained on an undirected sampling of maps.

View on arXiv
Comments on this paper