ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.04206
23
0

Multi-band Weighted lpl_plp​ Norm Minimization for Image Denoising

14 January 2019
Yanchi Su
Zhanshan Li
Haihong Yu
Zeyu Wang
ArXivPDFHTML
Abstract

Low rank matrix approximation (LRMA) has drawn increasing attention in recent years, due to its wide range of applications in computer vision and machine learning. However, LRMA, achieved by nuclear norm minimization (NNM), tends to over-shrink the rank components with the same threshold and ignore the differences between rank components. To address this problem, we propose a flexible and precise model named multi-band weighted lpl_plp​ norm minimization (MBWPNM). The proposed MBWPNM not only gives more accurate approximation with a Schatten ppp-norm, but also considers the prior knowledge where different rank components have different importance. We analyze the solution of MBWPNM and prove that MBWPNM is equivalent to a non-convex lpl_plp​ norm subproblems under certain weight condition, whose global optimum can be solved by a generalized soft-thresholding algorithm. We then adopt the MBWPNM algorithm to color and multispectral image denoising. Extensive experiments on additive white Gaussian noise removal and realistic noise removal demonstrate that the proposed MBWPNM achieves a better performance than several state-of-art algorithms.

View on arXiv
Comments on this paper