ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.03732
13
12
v1v2 (latest)

The statistical Minkowski distances: Closed-form formula for Gaussian Mixture Models

9 January 2019
Frank Nielsen
ArXiv (abs)PDFHTML
Abstract

The traditional Minkowski distances are induced by the corresponding Minkowski norms in real-valued vector spaces. In this work, we propose novel statistical symmetric distances based on the Minkowski's inequality for probability densities belonging to Lebesgue spaces. These statistical Minkowski distances admit closed-form formula for Gaussian mixture models when parameterized by integer exponents. This result extends to arbitrary mixtures of exponential families with natural parameter spaces being cones: This includes the binomial, the multinomial, the zero-centered Laplacian, the Gaussian and the Wishart mixtures, among others. We also derive a Minkowski's diversity index of a normalized weighted set of probability distributions from Minkowski's inequality.

View on arXiv
Comments on this paper