40
32

Individual common dolphin identification via metric embedding learning

Abstract

Photo-identification (photo-id) of dolphin individuals is a commonly used technique in ecological sciences to monitor state and health of individuals, as well as to study the social structure and distribution of a population. Traditional photo-id involves a laborious manual process of matching each dolphin fin photograph captured in the field to a catalogue of known individuals. We examine this problem in the context of open-set recognition and utilise a triplet loss function to learn a compact representation of fin images in a Euclidean embedding, where the Euclidean distance metric represents fin similarity. We show that this compact representation can be successfully learnt from a fairly small (in deep learning context) training set and still generalise well to out-of-sample identities (completely new dolphin individuals), with top-1 and top-5 test set (37 individuals) accuracy of 90.5±290.5\pm2 and 93.6±193.6\pm1 percent. In the presence of 1200 distractors, top-1 accuracy dropped by 12%12\%; however, top-5 accuracy saw only a 2.8%2.8\% drop

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.