ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.00603
25
63

Coarse-grain Fine-grain Coattention Network for Multi-evidence Question Answering

3 January 2019
Victor Zhong
Caiming Xiong
N. Keskar
R. Socher
ArXivPDFHTML
Abstract

End-to-end neural models have made significant progress in question answering, however recent studies show that these models implicitly assume that the answer and evidence appear close together in a single document. In this work, we propose the Coarse-grain Fine-grain Coattention Network (CFC), a new question answering model that combines information from evidence across multiple documents. The CFC consists of a coarse-grain module that interprets documents with respect to the query then finds a relevant answer, and a fine-grain module which scores each candidate answer by comparing its occurrences across all of the documents with the query. We design these modules using hierarchies of coattention and self-attention, which learn to emphasize different parts of the input. On the Qangaroo WikiHop multi-evidence question answering task, the CFC obtains a new state-of-the-art result of 70.6% on the blind test set, outperforming the previous best by 3% accuracy despite not using pretrained contextual encoders.

View on arXiv
Comments on this paper