57
230

SIXray : A Large-scale Security Inspection X-ray Benchmark for Prohibited Item Discovery in Overlapping Images

Abstract

In this paper, we present a large-scale dataset and establish a baseline for prohibited item discovery in Security Inspection X-ray images. Our dataset, named SIXray, consists of 1,059,231 X-ray images, in which 6 classes of 8,929 prohibited items are manually annotated. It raises a brand new challenge of overlapping image data, meanwhile shares the same properties with existing datasets, including complex yet meaningless contexts and class imbalance. We propose an approach named class-balanced hierarchical refinement (CHR) to deal with these difficulties. CHR assumes that each input image is sampled from a mixture distribution, and that deep networks require an iterative process to infer image contents accurately. To accelerate, we insert reversed connections to different network backbones, delivering high-level visual cues to assist mid-level features. In addition, a class-balanced loss function is designed to maximally alleviate the noise introduced by easy negative samples. We evaluate CHR on SIXray with different ratios of positive/negative samples. Compared to the baselines, CHR enjoys a better ability of discriminating objects especially using mid-level features, which offers the possibility of using a weakly-supervised approach towards accurate object localization. In particular, the advantage of CHR is more significant in the scenarios with fewer positive training samples, which demonstrates its potential application in real-world security inspection.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.