ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.11226
9
58

Fast Training Algorithms for Deep Convolutional Fuzzy Systems with Application to Stock Index Prediction

7 December 2018
Li-Xin Wang
ArXivPDFHTML
Abstract

A deep convolutional fuzzy system (DCFS) on a high-dimensional input space is a multi-layer connection of many low-dimensional fuzzy systems, where the input variables to the low-dimensional fuzzy systems are selected through a moving window across the input spaces of the layers. To design the DCFS based on input-output data pairs, we propose a bottom-up layer-by-layer scheme. Specifically, by viewing each of the first-layer fuzzy systems as a weak estimator of the output based only on a very small portion of the input variables, we design these fuzzy systems using the WM Method. After the first-layer fuzzy systems are designed, we pass the data through the first layer to form a new data set and design the second-layer fuzzy systems based on this new data set in the same way as designing the first-layer fuzzy systems. Repeating this process layer-by-layer we design the whole DCFS. We also propose a DCFS with parameter sharing to save memory and computation. We apply the DCFS models to predict a synthetic chaotic plus random time-series and the real Hang Seng Index of the Hong Kong stock market.

View on arXiv
Comments on this paper