ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.10666
11
5

Neural Architecture Search Over a Graph Search Space

27 December 2018
Stanislaw Jastrzebski
Quentin de Laroussilhe
Mingxing Tan
Xiao Ma
N. Houlsby
Andrea Gesmundo
    GNN
ArXivPDFHTML
Abstract

Neural Architecture Search (NAS) enabled the discovery of state-of-the-art architectures in many domains. However, the success of NAS depends on the definition of the search space. Current search spaces are defined as a static sequence of decisions and a set of available actions for each decision. Each possible sequence of actions defines an architecture. We propose a more expressive class of search space: directed graphs. In our formalism, each decision is a vertex and each action is an edge. This allows us to model iterative and branching architecture design decisions. We demonstrate in simulation, and on image classification experiments, basic iterative and branching search structures, and show that the graph representation improves sample efficiency.

View on arXiv
Comments on this paper