ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.10327
36
65
v1v2 (latest)

Portable, Data-Driven Malware Detection using Language Processing and Machine Learning Techniques on Behavioral Analysis Reports

26 December 2018
E. Karbab
M. Debbabi
ArXiv (abs)PDFHTML
Abstract

In response to the volume and sophistication of malicious software or malware, security investigators rely on dynamic analysis for malware detection to thwart obfuscation and packing issues. Dynamic analysis is the process of executing binary samples to produce reports that summarise their runtime behaviors. The investigator uses these reports to detect malware and attribute threat type leveraging manually chosen features. However, the diversity of malware and the execution environments makes manual approaches not scalable because the investigator needs to manually engineer fingerprinting features for new environments. In this paper, we propose, MalDy (mal~die), a portable (plug and play) malware detection and family threat attribution framework using supervised machine learning techniques. The key idea of MalDy portability is the modeling of the behavioral reports into a sequence of words, along with advanced natural language processing (NLP) and machine learning (ML) techniques for automatic engineering of relevant security features to detect and attribute malware without the investigator intervention. More precisely, we propose to use bag-of-words (BoW) NLP model to formulate the behavioral reports. Afterward, we build ML ensembles on top of BoW features. We extensively evaluate MalDy on various datasets from different platforms (Android and Win32) and execution environments. The evaluation shows the effectiveness and the portability MalDy across the spectrum of the analyses and settings.

View on arXiv
Comments on this paper