ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.10157
18
1

Motion Selective Prediction for Video Frame Synthesis

25 December 2018
V. Prinet
ArXiv (abs)PDFHTML
Abstract

Existing conditional video prediction approaches train a network from large databases and generalize to previously unseen data. We take the opposite stance, and introduce a model that learns from the first frames of a given video and extends its content and motion, to, eg, double its length. To this end, we propose a dual network that can use in a flexible way both dynamic and static convolutional motion kernels, to predict future frames. The construct of our model gives us the the means to efficiently analyze its functioning and interpret its output. We demonstrate experimentally the robustness of our approach on challenging videos in-the-wild and show that it is competitive wrt related baselines.

View on arXiv
Comments on this paper