ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.09042
80
5
v1v2 (latest)

Low-rank Approximation of Linear Maps

21 December 2018
P. Héas
Cédric Herzet
ArXiv (abs)PDFHTML
Abstract

This work provides closed-form solutions and minimal achievable errors for a large class of low-rank approximation problems in Hilbert spaces. The proposed theorem generalizes to the case of linear bounded operators and p-th Schatten norms previous results obtained in the finite dimensional case for the Frobenius norm. The theorem is illustrated in various settings, including low-rank approximation problems with respect to the trace norm, the 2-induced norm or the Hilbert-Schmidt norm. The theorem provides also the basics for the design of tractable algorithms for kernel-based or continuous DMD

View on arXiv
Comments on this paper