ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.08983
18
14

A Deep Four-Stream Siamese Convolutional Neural Network with Joint Verification and Identification Loss for Person Re-detection

21 December 2018
Amena Khatun
Simon Denman
Sridha Sridharan
Clinton Fookes
ArXivPDFHTML
Abstract

State-of-the-art person re-identification systems that employ a triplet based deep network suffer from a poor generalization capability. In this paper, we propose a four stream Siamese deep convolutional neural network for person redetection that jointly optimises verification and identification losses over a four image input group. Specifically, the proposed method overcomes the weakness of the typical triplet formulation by using groups of four images featuring two matched (i.e. the same identity) and two mismatched images. This allows us to jointly increase the interclass variations and reduce the intra-class variations in the learned feature space. The proposed approach also optimises over both the identification and verification losses, further minimising intra-class variation and maximising inter-class variation, improving overall performance. Extensive experiments on four challenging datasets, VIPeR, CUHK01, CUHK03 and PRID2011, demonstrates that the proposed approach achieves state-of-the-art performance.

View on arXiv
Comments on this paper