42
6

Multinomial Goodness-of-Fit Based on U-Statistics: High-Dimensional Asymptotic and Minimax Optimality

Abstract

We consider multinomial goodness-of-fit tests in the high-dimensional regime where the number of bins increases with the sample size. In this regime, Pearson's chi-squared test can suffer from low power due to the substantial bias as well as high variance of its statistic. To resolve these issues, we introduce a family of U-statistic for multinomial goodness-of-fit and study their asymptotic behaviors in high-dimensions. Specifically, we establish conditions under which the considered U-statistic is asymptotically Poisson or Gaussian, and investigate its power function under each asymptotic regime. Furthermore, we introduce a class of weights for the U-statistic that results in minimax rate optimal tests.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.