ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.08658
13
466

nocaps: novel object captioning at scale

20 December 2018
Harsh Agrawal
Karan Desai
Yufei Wang
Xinlei Chen
Rishabh Jain
Mark Johnson
Dhruv Batra
Devi Parikh
Stefan Lee
Peter Anderson
    VLM
ArXivPDFHTML
Abstract

Image captioning models have achieved impressive results on datasets containing limited visual concepts and large amounts of paired image-caption training data. However, if these models are to ever function in the wild, a much larger variety of visual concepts must be learned, ideally from less supervision. To encourage the development of image captioning models that can learn visual concepts from alternative data sources, such as object detection datasets, we present the first large-scale benchmark for this task. Dubbed ñocaps', for novel object captioning at scale, our benchmark consists of 166,100 human-generated captions describing 15,100 images from the OpenImages validation and test sets. The associated training data consists of COCO image-caption pairs, plus OpenImages image-level labels and object bounding boxes. Since OpenImages contains many more classes than COCO, nearly 400 object classes seen in test images have no or very few associated training captions (hence, nocaps). We extend existing novel object captioning models to establish strong baselines for this benchmark and provide analysis to guide future work on this task.

View on arXiv
Comments on this paper