ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.08593
44
53
v1v2 (latest)

Reinforcement Learning for Adaptive Caching with Dynamic Storage Pricing

17 December 2018
A. Sadeghi
Fatemeh Sheikholeslami
A. Marques
G. Giannakis
ArXiv (abs)PDFHTML
Abstract

Small base stations (SBs) of fifth-generation (5G) cellular networks are envisioned to have storage devices to locally serve requests for reusable and popular contents by \emph{caching} them at the edge of the network, close to the end users. The ultimate goal is to shift part of the predictable load on the back-haul links, from on-peak to off-peak periods, contributing to a better overall network performance and service experience. To enable the SBs with efficient \textit{fetch-cache} decision-making schemes operating in dynamic settings, this paper introduces simple but flexible generic time-varying fetching and caching costs, which are then used to formulate a constrained minimization of the aggregate cost across files and time. Since caching decisions per time slot influence the content availability in future slots, the novel formulation for optimal fetch-cache decisions falls into the class of dynamic programming. Under this generic formulation, first by considering stationary distributions for the costs and file popularities, an efficient reinforcement learning-based solver known as value iteration algorithm can be used to solve the emerging optimization problem. Later, it is shown that practical limitations on cache capacity can be handled using a particular instance of the generic dynamic pricing formulation. Under this setting, to provide a light-weight online solver for the corresponding optimization, the well-known reinforcement learning algorithm, QQQ-learning, is employed to find optimal fetch-cache decisions. Numerical tests corroborating the merits of the proposed approach wrap up the paper.

View on arXiv
Comments on this paper