ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.08491
24
32

cuPC: CUDA-based Parallel PC Algorithm for Causal Structure Learning on GPU

20 December 2018
Behrooz Zarebavani
Foad Jafarinejad
Matin Hashemi
Saber Salehkaleybar
ArXivPDFHTML
Abstract

The main goal in many fields in the empirical sciences is to discover causal relationships among a set of variables from observational data. PC algorithm is one of the promising solutions to learn underlying causal structure by performing a number of conditional independence tests. In this paper, we propose a novel GPU-based parallel algorithm, called cuPC, to execute an order-independent version of PC. The proposed solution has two variants, cuPC-E and cuPC-S, which parallelize PC in two different ways for multivariate normal distribution. Experimental results show the scalability of the proposed algorithms with respect to the number of variables, the number of samples, and different graph densities. For instance, in one of the most challenging datasets, the runtime is reduced from more than 11 hours to about 4 seconds. On average, cuPC-E and cuPC-S achieve 500 X and 1300 X speedup, respectively, compared to serial implementation on CPU. The source code of cuPC is available online [1].

View on arXiv
Comments on this paper