ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.08350
22
25

Plug-and-Play: Improve Depth Estimation via Sparse Data Propagation

20 December 2018
Tsun-Hsuan Wang
Fu-En Wang
Juan-Ting Lin
Yi-Hsuan Tsai
Wei-Chen Chiu
Min Sun
    MDE
ArXivPDFHTML
Abstract

We propose a novel plug-and-play (PnP) module for improving depth prediction with taking arbitrary patterns of sparse depths as input. Given any pre-trained depth prediction model, our PnP module updates the intermediate feature map such that the model outputs new depths consistent with the given sparse depths. Our method requires no additional training and can be applied to practical applications such as leveraging both RGB and sparse LiDAR points to robustly estimate dense depth map. Our approach achieves consistent improvements on various state-of-the-art methods on indoor (i.e., NYU-v2) and outdoor (i.e., KITTI) datasets. Various types of LiDARs are also synthesized in our experiments to verify the general applicability of our PnP module in practice. For project page, see https://zswang666.github.io/PnP-Depth-Project-Page/

View on arXiv
Comments on this paper