ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06864
13
91

Fully Convolutional Speech Recognition

17 December 2018
Neil Zeghidour
Qiantong Xu
Vitaliy Liptchinsky
Nicolas Usunier
Gabriel Synnaeve
R. Collobert
ArXivPDFHTML
Abstract

Current state-of-the-art speech recognition systems build on recurrent neural networks for acoustic and/or language modeling, and rely on feature extraction pipelines to extract mel-filterbanks or cepstral coefficients. In this paper we present an alternative approach based solely on convolutional neural networks, leveraging recent advances in acoustic models from the raw waveform and language modeling. This fully convolutional approach is trained end-to-end to predict characters from the raw waveform, removing the feature extraction step altogether. An external convolutional language model is used to decode words. On Wall Street Journal, our model matches the current state-of-the-art. On Librispeech, we report state-of-the-art performance among end-to-end models, including Deep Speech 2 trained with 12 times more acoustic data and significantly more linguistic data.

View on arXiv
Comments on this paper