79
7

Interpretable Matrix Completion: A Discrete Optimization Approach

Abstract

We consider the problem of matrix completion on an n×mn \times m matrix. We introduce the problem of Interpretable Matrix Completion that aims to provide meaningful insights for the low-rank matrix using side information. We show that the problem can be reformulated as a binary convex optimization problem. We design OptComplete, based on a novel concept of stochastic cutting planes to enable efficient scaling of the algorithm up to matrices of sizes n=106n=10^6 and m=106m=10^6. We report experiments on both synthetic and real-world datasets that show that OptComplete has favorable scaling behavior and accuracy when compared with state-of-the-art methods for other types of matrix completion, while providing insight on the factors that affect the matrix.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.