ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06356
31
212

Searching with Consistent Prioritization for Multi-Agent Path Finding

15 December 2018
Hang Ma
Daniel Harabor
Peter Stuckey
Jiaoyang Li
Sven Koenig
    AI4CE
ArXivPDFHTML
Abstract

We study prioritized planning for Multi-Agent Path Finding (MAPF). Existing prioritized MAPF algorithms depend on rule-of-thumb heuristics and random assignment to determine a fixed total priority ordering of all agents a priori. We instead explore the space of all possible partial priority orderings as part of a novel systematic and conflict-driven combinatorial search framework. In a variety of empirical comparisons, we demonstrate state-of-the-art solution qualities and success rates, often with similar runtimes to existing algorithms. We also develop new theoretical results that explore the limitations of prioritized planning, in terms of completeness and optimality, for the first time.

View on arXiv
Comments on this paper