ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.05815
17
72

Unsupervised Change Detection in Satellite Images Using Convolutional Neural Networks

14 December 2018
Kevin Louis de Jong
Anna Sergeevna Bosman
    SSL
ArXivPDFHTML
Abstract

This paper proposes an efficient unsupervised method for detecting relevant changes between two temporally different images of the same scene. A convolutional neural network (CNN) for semantic segmentation is implemented to extract compressed image features, as well as to classify the detected changes into the correct semantic classes. A difference image is created using the feature map information generated by the CNN, without explicitly training on target difference images. Thus, the proposed change detection method is unsupervised, and can be performed using any CNN model pre-trained for semantic segmentation.

View on arXiv
Comments on this paper