ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.05788
11
86

AU R-CNN: Encoding Expert Prior Knowledge into R-CNN for Action Unit Detection

14 December 2018
Chen Ma
Li Chen
Jun-hai Yong
ArXivPDFHTML
Abstract

Detecting action units (AUs) on human faces is challenging because various AUs make subtle facial appearance change over various regions at different scales. Current works have attempted to recognize AUs by emphasizing important regions. However, the incorporation of expert prior knowledge into region definition remains under-exploited, and current AU detection approaches do not use regional convolutional neural networks (R-CNN) with expert prior knowledge to directly focus on AU-related regions adaptively. By incorporating expert prior knowledge, we propose a novel R-CNN based model named AU R-CNN. The proposed solution offers two main contributions: (1) AU R-CNN directly observes different facial regions, where various AUs are located. Specifically, we define an AU partition rule which encodes the expert prior knowledge into the region definition and RoI-level label definition. This design produces considerably better detection performance than existing approaches. (2) We integrate various dynamic models (including convolutional long short-term memory, two stream network, conditional random field, and temporal action localization network) into AU R-CNN and then investigate and analyze the reason behind the performance of dynamic models. Experiment results demonstrate that \textit{only} static RGB image information and no optical flow-based AU R-CNN surpasses the one fused with dynamic models. AU R-CNN is also superior to traditional CNNs that use the same backbone on varying image resolutions. State-of-the-art recognition performance of AU detection is achieved. The complete network is end-to-end trainable. Experiments on BP4D and DISFA datasets show the effectiveness of our approach. The implementation code is available online.

View on arXiv
Comments on this paper